Abstract

Optimal design of stents for a cerebral aneurysm is desired for efficient flow reduction in the aneurysm. In this study, we aimed to optimize stent design at several porosities, estimate the influence of stent design on aneurysm flow, and evaluate the ability of stents to reduce flow. Stent models were constructed as sets of squares or rectangles in the necks of a two-dimensional (2D) and realistic aneurysm. Then, automated optimization was performed using a combination of simulated annealing and lattice Boltzmann flow simulation. By simulated annealing, stents were gradually modified to reduce the average velocity in an aneurysm. As a result of optimization, stents of all porosities demonstrated an inhomogeneous distribution with dense struts in the inflow area. Flow reduction was increased compared with the initial stent. Under the condition of high porosity, flow reduction by the stent drastically increased as porosity decreased. Under low porosity, the increase of velocity reduction was moderate even as porosity decreased. Optimization can enhance flow reduction by stents. However, the increase in reduction associated with decreasing porosity is moderate under lower-porosity conditions. This threshold may help in the choice of stent porosity for each specific aneurysm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.