Abstract

The effect of pore size and pore volume fraction on strength in brittle solids is evaluated. The analysis considers that the strength degradaton of a solid containing a large number of spherical pores is due to a strong effect of porosity on Young's modulus. Each pore is assumed to possess radial or annular flaws emanating from the pore surface whose lengths are considered to be independent of pore size. The effect of stress concentration induced by the presence of the pore is included in the equation for strength through the Young's modulus dependence of porosity originally developed using the concept of crack opening displacement. It is shown that the strength of a solid containing spherical pores is controlled by the pore size, pore volume fracton and the radial (or annular) crack size to pore size ratio. Predicted variation of strength with pore volume fraction is tested against experimental data for glass and polycrystalline alumina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call