Abstract

Silicon is regarded as the most promising electrode material to meet the high-capacity demand for lithium-ion batteries (LIBs). Nevertheless, the large volume expansion during charging/discharging process restricts its practical application. In this report, a facile chemical dealloying method is conducted to prepare porous silicon materials from Al-Si alloys with different proportions at ambient temperature. The porosity of anode materials could buffer the huge volume change of Si anode and enhance the ion transport. Finally, the optimized Si20 sample delivers a capacity of 1662 mAh g−1 after 145 cycles at 500 mA g−1 and a high rate capability up to 908 mAh g−1 at 5000 mA g−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.