Abstract

Multifunctional membranes S7P0.7, S7P3.0, and dual membranes composed of soya protein isolate (SPI) and polyethylene oxide (PEO) were produced for wound dressing applications. The internal structure of the membranes was confirmed by scanning electron microscopy (SEM) to be homogeneous and coarser with a porous-like network. S7P3.0 showed the tensile strength of 0.78 ± 0.04 MPa. In the absence of antibiotics, the dual membrane (combination of S7P0.7 and S7P3.0) exhibited potential antibacterial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. Hemolysis quantitative data presented in the image demonstrates that all samples exhibited hemolysis levels below 5 %. Dual membrane showed 77.93 ± 9.5 % blood uptake which reflects its absorption capacity. The combination of S7P0.7 and S7P3.0 influenced the dual membrane's antibacterial, biocompatibility, and good hemolytic potentials. The dual membranes' promising histology features after implantation suggest they could be used as wound dressings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.