Abstract

Porosity and solidification cracking in joining of thick sections are very common issues in deep penetration keyhole laser-arc hybrid welding (LAHW). In the present work, 45 mm thick high strength steel was joined by a double-sided technique. With combined use of fast welding speeds and larger air gap between plates, higher amount of porosity was found because of the dynamic behavior of the keyhole walls. Solidification cracking formed at the centerline in the bottom of the weld due to high-depth-to-width geometrical ratio. Numerical simulations have been performed and showed very high cooling rate and stresses occurred in the root of the deep welds, which corresponds with higher cracking tendency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.