Abstract

Porosity and pore size regulated the degradation rate and the release of low molar mass degradation products from porous polylactide (PLA) scaffolds. PLA scaffolds with porosities above 90% and different pore size ranges were subjected to hydrolytic degradation and compared to their solid analog. The solid film degraded fastest and the degradation rate of the porous structures decreased with decreasing pore size. Degradation products were detected earlier from the solid films compared to the porous structures as a result of the additional migration path within the porous structures. An intermediate degradation rate profile was observed when the pore size range was broadened. The morphology of the scaffolds changed during hydrolysis where the larger pore size scaffolds showed sharp pore edges and cavities on the scaffold surface. In the scaffolds with smaller pores, the pore size decreased during degradation and a solid surface was formed on the top of the scaffold. Porosity and pore size, thus, influenced the degradation and the release of degradation products that should be taken into consideration when designing porous scaffolds for tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call