Abstract

Summary Numerical programs for simulating flow and reactive transport in porous media is essential for predicting reservoir properties related to CO 2 sequestration performance, subsurface storage and risk assessment. In this paper we solve the Navier Stokes’ equation using finite difference method, on a simulated porous rock structure, to study the velocity distribution of fluid flowing through it under a constant pressure gradient. A reactive solute carried through the fluid is allowed to interact with the minerals in the rock. This chemical reaction dissolves the mineral which changes the rock structure thus affecting its flow properties. These changes of flow properties are studied with variation in reactive solute concentration and pressure field. The different mechanisms of dissolution responsible for the variation of flow properties for the different parameters is predicted. Before the onset of homogeneous dissolution, variation in porosity follows a power-law behaviour with change in permeability when the latter is scaled by the concentration of the reactive species. The simulation results are compared with available experimental data and found to give a reasonable match.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.