Abstract

AbstractIn this paper, frequency domain dynamic response of a pile embedded in a half‐space porous medium and subjected to P, SV seismic waves is investigated. According to the fictitious pile methodology, the problem is decomposed into an extended poroelastic half‐space and a fictitious pile. The extended porous half‐space is described by Biot's theory, while the fictitious pile is treated as a bar and a beam and described by the conventional 1‐D structure vibration theory. Using the Hankel transformation method, the fundamental solutions for a half‐space porous medium subjected to a vertical or a horizontal circular patch load are established. Based on the obtained fundamental solutions and free wave fields, the second kind of Fredholm integral equations describing the vertical and the horizontal interaction between the pile and the poroelastic half‐space are established. Solution of the integral equations yields the dynamic response of the pile to plane P, SV waves. Numerical results show the parameters of the porous medium, the pile and incident waves have direct influences on the dynamic response of the pile–half‐space system. Significant differences between conventional single‐phase elastic model and the poroelastic model for the surrounding medium of the pile are found. Copyright © 2007 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.