Abstract
A new class of unilateral variational models appearing in the theory of poroelasticity is introduced and studied. A poroelastic medium consists of solid phase and pores saturated with a Newtonian fluid. The medium contains a fluid-driven crack, which is subjected to non-penetration between the opposite crack faces. The fully coupled poroelastic system includes elliptic–parabolic governing equations under the unilateral constraint. Well-posedness of the corresponding variational inequality is established based on the Rothe semi-discretization in time, after subsequent passing time step to zero. The NLCP-formulation of non-penetration conditions is given which is useful for a semi-smooth Newton solution strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.