Abstract

A new class of unilateral variational models appearing in the theory of poroelasticity is introduced and studied. A poroelastic medium consists of solid phase and pores saturated with a Newtonian fluid. The medium contains a fluid-driven crack, which is subjected to non-penetration between the opposite crack faces. The fully coupled poroelastic system includes elliptic–parabolic governing equations under the unilateral constraint. Well-posedness of the corresponding variational inequality is established based on the Rothe semi-discretization in time, after subsequent passing time step to zero. The NLCP-formulation of non-penetration conditions is given which is useful for a semi-smooth Newton solution strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call