Abstract
Live video streaming platforms have attracted millions of streamers and daily active users. For profit and popularity accumulation, some streamers mix pornography content into live content to avoid online supervision. Therefore, accurate recognition of porn streamers in live video streaming has become a challenging task. Porn streamers in live video present multimodal characteristics including visual and acoustic content. Therefore, a porn streamer recognition method in live video streaming is proposed that uses attention-gated multimodal deep features. Our contribution includes the following: (1) multimodal deep features, i.e., spatial, motion and audio, are extracted from live video streaming using convolutional neural networks (CNNs), in which the temporal context of multimodal features is obtained with a bi-directional gated recurrent unit (Bi-GRU); (2) the tri-attention gated mechanism is applied to map the associations between different modalities by assigning higher weights to important features for further reduction in the redundancy of multimodal features; (3) porn streamers in live video streaming are recognized via the attention-gated multimodal deep features. Six experiments are conducted on a real-world dataset, and the competitive results demonstrate that our method can effectively recognize porn streamers in live video streaming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.