Abstract

Poria is used as a traditional Chinese herbal medicine with anti-inflammatory, anticancer, and mood-stabilizing properties. Poria contains triterpenoids and polysaccharides, which are reported to regulate the cytoplasmic free calcium associated with the N-methyl-D-aspartate receptor and affect the cell function of neonatal rat nerve cells and hippocampal neurons. Although the modulatory effects of Poria on neuronal function have been widely reported, the molecular mechanism of these effects is unclear. Cell migration ability and the reorganization of actin filaments are important biological functions during neuronal development, and they can be regulated mainly by the Rho signaling pathway. We found that the cell migration ability and actin condensation in B35 cells enhanced by P. cocos (a water solution of P. cocos cum Radix Pini (PRP) or White Poria (WP)) might be caused by increased RhoA and CDC42 activity and increased expression of downstream ROCK1, p-MLC2, N-WASP, and ARP2/3 in B35 cells. Similar modulations of cell migration ability, actin condensation, and Rho signaling pathway were also observed in the C6 glial cell line, except for the PRP-induced regulation of RhoA and CDC42 activities. Ketamine-induced inhibition of cell migration and actin condensation can be restored by P. cocos. In addition, we observed that the increased expression of RhoA and ROCK1 or the decreased expression of CDC42 and N-WASP caused by ketamine in B35 cells could also be restored by P. cocos. The results of this study suggest that the regulatory effects of P. cocos on cell migration and actin filament aggregation are closely related to the regulation of RhoA, CDC42, and Rho signaling pathways in both B35 and C6 cells. PRP and WP have the potential to restore neuronal cell Rho signaling abnormalities involved in some mental diseases.

Highlights

  • Poria cocos (Schw.) is a parasitic fungus that exists in various species of Pinus

  • We found that P. cocos cum Radix Pini (PRP) and White Poria (WP) increased the expression of RhoGDP-dissociation inhibitor 1 (RhoGDI1) (p < 0.05 for PRP and p < 0.01 for WP) in B35 cells (Figures 1(a) and 1(b))

  • We found that PRP and WP could enhance Ras homolog family member A (RhoA), RhoA-GTP, Rho-associated coiled-coil containing protein kinase 1 (ROCK1), and phosphorylated myosin light chain 2 (p-MLC2) expression in B35 neuronal cells

Read more

Summary

Introduction

Poria cocos (Schw.) is a parasitic fungus that exists in various species of Pinus. P. cocos cum Radix Pini (PRP; Sclerotium Pararadicis, known as Fu Shen in traditional Chinese herbal medicine), and White Poria (WP; known as Bai Fu Ling in traditional Chinese herbal medicine) are medicinal herbs from the dry sclerotium of Polyporaceae fungi that have diuretic, sedative, and tonic effects [1]. P. cocos mediates its pharmacological anti-inflammatory properties via two triterpenoids, namely, pachymic acid and dehydrotumulosic acid [4]. P. cocos has immunomodulatory properties that can alter immune function through dynamically regulated cytokine expression [5, 6]. P. cocos has been found to regulate the concentration of free calcium in the cytoplasm of brain neurons in neonatal rats [10]. Water extracts of P. cocos have been demonstrated to dose-dependently increase cytosolic free calcium [2] and inhibit glutamate-induced cytosolic free calcium [10] in cells

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call