Abstract

BackgroundPoria acid (PAC) is a triterpene compound found in Poria cocos, a traditional Chinese medicine (TCM). The current study aims to explore the therapeutic effects and potential mechanisms of PAC on the migration and proliferation of human renal cell carcinoma (RCC) cells as well as tumor growth in animal model. MethodsCell viability and proliferative capacity of normal renal cells and RCC cells were investigated by MTT assay. In addition, 786-O cells were divided into four groups and treated with different concentrations of PAC (0, 20, 40, and 60 μM) for 48 h. Cell scratch test and cell invasion assay were performed to evaluate the effects of PAC on the invasion and migration of RCC cells, respectively. The effects of PAC on apoptosis of RCC cells and expression levels of PI3K/Akt/NF-kB signaling pathway-related biomarkers were investigated using TUNEL staining and Western blotting methods, respectively. Effects of PAC on the inhibitory activity of RCC tumor in mice were evaluated in a 786-O CDX model. ResultsThe study found that PAC inhibited the viability of RCC cells in a dose-dependent manner, as demonstrated by in vitro cell assays (p < 0.05). However, PAC showed no significant inhibitory effect on normal renal cells (p > 0.05). PAC also significantly inhibited the migration and invasion of RCC via EMT/MMP signaling pathways (p < 0.05). Immunofluorescence and immunoblotting results showed that PAC induced the apoptosis of RCC, which was accompanied by changes in the expression levels of apoptosis-related proteins (p < 0.05). Moreover, PAC significantly downregulated the PI3K/Akt/NF-kB signaling pathway in a concentration-dependent manner (p < 0.05). The effect of PAC on RCC apoptosis was dramatically reversed by 740Y–P (PI3K agonist) (p < 0.05) but significantly enhanced in the presence of LY294002 (PI3K inhibitor) (p < 0.05). The results of in vivo experiment also demonstrated that the antitumor activity of PAC was achieved by affecting the PI3K/Akt/NF-kB signaling pathway. ConclusionsPAC can effectively suppress the proliferation, invasion and migration of RCC cells, and exhibit anti-tumor effects in RCC model by inhibiting the PI3K/Akt/NF-kB signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.