Abstract

Sediment cores were collected for pore-water analysis from the eastern end of Devils Lake, located in northeastern North Dakota, to determine diagenetic reactions occurring in surficial bottom sediments and to evaluate the impact of these reactions on chemical concentrations in the overlying lake water. Sediment pore waters are enriched in major ions and nutrients relative to lake water. The principal sources of major ions to pore water are saline sediments located in the upper 1 m of bottom sediment. The principal source of titration alkalinity and nutrients to pore water is microbial decomposition of sedimentary organic matter by sulfate reduction. Sediment pore waters in the eastern part of Devils Lake have higher major-ion concentrations and solute-flux rates than the sediment pore waters in the central part of the lake. In contrast, sediment pore waters in the central part of Devils Lake have significantly higher nutrient concentrations and solute-flux rates. Major-ion concentrations and solute-flux rates in sediment pore water increase from west to east. These trends indicate that bottom-sediment diagenetic processes are, in part, responsible for the observed concentration gradient in the lake. The higher nutrient concentrations and the higher nutrient diffusional-flux rates in Main Bay are the result of more labile sedimentary organic matter and the occurrence of sulfate reduction. Environmentally-reactive trace-metal concentrations (Cu, Pb, Zn, and Fe) in bottom sediments decrease from west to east with distance from the surface-water sources and with increasing surface-water salinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call