Abstract
Sodium-ion batteries (SIBs) is considered as a promising alternative to lithium-ion batteries. Supercapacitors (SCs) are receiving great attention for their significantly higher power density than batteries and prolonged cycle life. Herein, SIBs and SCs based on N-doped amorphous multi-size pores dominated polymeric frameworks were fabricated and examined. The enlarged interlayer spacing and multi-size-pore dominated interconnected architecture with high specific surface area, high pore volume and high N content optimize the electrochemical performance of N-PPF-20. As an anode material, N-PPF-20 exhibited a sodium ion storage capacity of 432.2 mAh g−1 at a current density of 0.05 A g−1, while maintaining a reversible capacity of 61.1 mAh g−1 at an ultrahigh current density of 20 A g−1. Additionally, a specific capacity of 158.3 mAh g−1 at 1 A g−1 was obtained after 1000 cycles, indicating an excellent cycling stability. When tested as an electrode material for SCs, N-PPF-20 delivered a high specific capacitance of 438.7 F g−1 at 0.1 A g−1, and a specific capacitance of 111.2 F g−1 was achieved even at a high current density of 10 A g−1. Meanwhile, a long-term cycling life test demonstrated a specific capacitance of 120 F g−1 at an ultrahigh current density of 10 A g−1 after 10,000 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.