Abstract

Reactive transport processes in porous media with dissolution of solid structures are widely encountered in scientific and engineering problems. In the present work, the reactive transport processes in heterogeneous porous structures generated by Monte Carlo stochastic movement are simulated by using the lattice Boltzmann method. Six dissolution patterns are identified under different Peclet and Damkohler numbers, including uniform pattern, hybrid pattern, compact pattern, conical pattern, dominant pattern, and ramified pattern. Particularly, when Peclet and Damkohler numbers are larger than 1, the increase in the heterogeneity rises the chance of preferential channel flow in the porous medium and thus intensifies the wormhole phenomena, leading to higher permeability. The pore-scale results also show that compared with the specific surface area, the permeability is more sensitive to the alteration of the structural heterogeneity, and it is challenging to propose a general formula between permeability and porosity under different reactive transport conditions and structural heterogeneity. Thus, deep neural network is employed to predict the permeability–porosity relationship. The average value of mean absolute percentage error of prediction of 12 additional permeability–porosity curves is 6.89%, indicating the promising potential of using deep learning for predicting the complicated variations of permeability in heterogeneous porous media with dissolution of solid structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.