Abstract

According to the structure and working characteristics of zinc-nickel single-flow battery stack cell, this paper proposes a pore-size analysis model for internal mass transfer and chemical reaction of positive electrode to describe liquid-phase mass transfer, solid-phase mass transfer, and electrochemical reaction. The lattice Boltzmann method was used to simulate the steady-state reaction under constant current charging. The distribution of the concentration of liquid-phase reaction ions, the proton concentration of the solid phase, and the reaction current density were determined. The influence of electrolyte flow velocity and constant current charge-current density on the electrode reaction was further explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.