Abstract

A fully coupled heat transfer model at pore-scale of volumetric solar receiver is established in this paper. The X-ray computed tomography technique is applied to reconstruct the porous structure. By generating the voxel mesh and coupling with the Monte Carlo Ray Tracing method, the energy source due to the solar radiation could be determined and then added to the unstructured CFD mesh. The governing equations are solved by the commercial CFD software FLUENT. The results show that the details of the fluid flow and heat transfer in volumetric solar receiver are successfully captured. The pressure drop correlation corresponds satisfactorily to the previous study. The local convective heat transfer coefficient varies in a small range along the inlet fluid flow direction inside volumetric solar receiver and the average Nusselt number could be correlated to a power function of the Reynolds number. The radiation transfer inside the porous media is visualized and thermal radiation loss is evident at the entrance of the solar receiver. The proportion taken by radiation in the total heat transfer is determined as a function of the average temperature of porous skeleton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.