Abstract

AbstractAn approach is presented for predicting saturated hydraulic conductivity (ksat) and the unsaturated hydraulic conductivity function (HCF) of coarse-grained soils using pore-scale modeling of liquid configurations in idealized unit pores. Procedures are described for estimating ksat and the HCF from simple measurements of grain size distribution (GSD) obtained using mechanical sieve analysis. Measured GSD is converted into an equivalent population of spherical particles arranged to form subassemblies representing relatively loose and relatively dense particle configurations. Capillary theory and the geometry of unit pores formed within the particle subassemblies are used to quantify pore-scale liquid configurations as a function of matric suction. Corresponding hydraulic conductivity is calculated from pore-scale hydrodynamic considerations. Comparison between measured and predicted ksat for a suite of sand-sized soils demonstrates that the approach is an improvement over existing approaches, based...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.