Abstract

Purpose To fabricate high performance parts, this paper aims to systematically study the pores characteristics and their formation mechanisms in selective laser melting (SLM) AlSi10Mg. Design/methodology/approach Cubes of 10 × 10 × 5 mm were manufactured in different laser power, scan speed and scan space. Optical microscope (OM) and scanning electron microscopes (SEM) were used to observe morphology of pores. Findings Round or irregular pores were found in SLMed AlSi10Mg parts. All the round pores have smooth inner walls and locate in the melt pool. The formation mechanisms of the round pores are contributed to the evaporation of elements in the melt pool, H2O, high laser energy input and hollow powder. Irregular pores have rough inner walls. Big scan space, unevenness of the upper surface, large layer thickness, spatter and oxide are the main reasons of generating irregular pores which outside the melt pool. Instability of keyhole leads to the irregular pores locate in the bottom of keyhole mode melt pool. Originality/value Relationship between pores and melt pool were studied systematically for the first time. Researches of pores characteristics and their formation mechanisms in SLMed AlSi10Mg would be a valuable reference for researchers to obtain an important insight into and control the defect in SLMed Al alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call