Abstract

Quaternary shale gas resources are abundant in the world, but Quaternary shale contains a lot of pore water, which affects the enrichment of shale gas. At present, the controlling effect of pore water on gas enrichment in Quaternary shale is not clear. Taking the Quaternary shale of Qaidam Basin, China as an example, this paper systematically studies the characteristics of pore water in Quaternary shale through X-ray diffraction rock analysis, nuclear magnetic resonance, methane isothermal adsorption and other experiments, and reveals the controlling effect of pore water on shale gas enrichment. The results show that clay shale and silty shale are mainly developed in Quaternary shale. The clay shale is more hydrophilic, and water mainly exists in micropores and mesopores. Silty shale is less hydrophilic, and water mainly exists in mesopores and macropores. Pore water controls the formation of shale gas by the content of potassium and sodium ions, controls the adsorption of shale gas by occupying the adsorption point on the pore surface, controls the flow of shale gas by occupying the pore space, and controls the occurrence of shale gas by forming water film. Therefore, pore water has multiple controlling effects on shale gas enrichment. This achievement is significant in enriching shale gas geological theory and guide shale gas exploration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call