Abstract
Membrane-based separation techniques are responsible for great advances in the separation of propylene/propane mixtures. In this study, bis(triethoxysilyl)acetylene (BTESA) was selected as the precursor in the fabrication of organosilica membranes for use in propylene/propane separation. We proposed an effective strategy to finely engineer the pore subnano-environment of BTESA membranes for highly selective propylene/propane separation via controlling the calcination temperatures. Measurement of the surface energy, the 29Si-NMR spectra, and the gas sorption isotherms clearly indicated that low-temperature calcined BTESA materials with a greater number of silanol groups showed an enhanced affinity to propylene molecules. BTESA membranes calcined at 150 °C featured a promisingly high C3H6/C3H8 selectivity of 52 and a C3H6 permeance of 1.7 ✕ 10−8 mol m−2 s−1 Pa−1 at 50 °C. These values were approximate to those reported for ZIF-8 membranes and higher than the standards for commercialization. The high level of C3H6/C3H8 separation performance was believed to be accounted by the synergetic effects of both controlled pore size and enhanced affinity to propylene molecules. Moreover, compared with traditional organosilica membranes that were calcined at ~350 °C, low-temperature calcination (150 °C) for BTESA membranes efficiently reduced the energy consumption and fabrication cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.