Abstract

Membrane pores that are induced in oriented membranes by an antimicrobial peptide (AMP), protegrin-1 (PG-1), are investigated by (31)P and (2)H solid state NMR spectroscopy. We incorporated a well-studied peptide, protegrin-1 (PG-1), a beta-sheet AMP, to investigate AMP-induced dynamic supramolecular lipid assemblies at different peptide concentrations and membrane compositions. Anisotropic NMR line shapes specifying toroidal pores and thinned membranes, which are formed in membrane bilayers by the binding of AMPs, have been analyzed for the first time. Theoretical NMR line shapes of lipids distributed on the surface of toroidal pores and thinned membranes reproduce reasonably well the line shape characteristics of our experimentally measured (31)P and (2)H solid-state NMR spectra of oriented lipids binding with PG-1. The lateral diffusions of lipids are also analyzed from the motionally averaged one- and two-dimensional (31)P and (2)H solid-state NMR spectra of oriented lipids that are binding with AMPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call