Abstract

Complex characteristics of the pores and properties of porous reaction-bonded Si3N4 have been investigated and correlated with the microstructure of Si3N4 grains. Porous ceramics with porosities of ≤ 75 vol% and α-Si3N4 matte grains (α/β phase ratio of 1.5) or α-Si3N4 whiskers (α/β phase ratio of 0.36) were prepared by in situ nitridation of silicon powder. To obtain various microstructures by α → β-phase transformation and grain morphology modification, samples were heat-treated at 1700 °C while embedded in a Si3N4 powder bed containing MgO. By the growth of α-matte or β-Si3N4 grains on the pore walls, highly interconnected structures with spherical cavities and unimodal pore size distributions resulted with d50 ≈ 8.8 µm and ≈ 6.5 µm, respectively. In contrast, α-whiskers grew inside the pore cavities; thus, complex and irregular inter-particle pores appeared which generated an extra peak near d50 ≈ 1 µm forming a bimodal pore size distribution. Compared to the α-matte grains, α-whiskers densified upon heat treatment and produced a large drop in porosity, which resulted in a structure with less interconnectivity. As a consequence of growth of fine β-rods, pore walls became relatively smooth and whisker free; thus, inter-cluster channels were modified to spherical cavities with d50 ≈ 3.7 µm. Samples exhibiting networked whiskers and fine pores or low porosity demonstrated higher compressive strength than the interconnected structures with spherical cavities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call