Abstract

Coal is a porous medium with complex pore structures. The characteristics of the pore structure play an important role in various aspects of coal use, including extraction of methane from coal seams, CO2 sequestration in coal, and water purification by activated carbon. To describe comprehensively the pore structure of coal, we apply transmission electron microscopy (TEM) and synchrotron small-angle X-ray scattering (SAXS) measurements to six coal samples from medium to high rank. The positive deviation of SAXS data from Porod’s law was observed. The positive deviation correction of SAXS data was carried out to quantitatively obtain the pore size distribution and specific surface area. We find that the pore size distribution is independent of the coal rank but varies with the vitrinite content; pores in vitrinite-rich coals are smaller than those in vitrinite-poor coals for the same rank. Channel-like and interconnected pores are observed for both high- and low-volatile bituminous coals. Among all coal sa...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.