Abstract

Pore structure of glassy carbon (GC) and pyrolytic graphite (PG) have been investigated. GC is one of the most impervious of solids finding applications in prosthetic devices and fuel cells while PG is used extensively in the aerospace industry. One third of the microstructure of GC consists of closed pores inaccessible to fluids. The microstructure of this material has been characterized using x-ray diffraction (XRD) and high resolution electron microscopy. Small angle x-ray scattering (SAXS) has been used to measure the angstrom sized pores and to follow the evolution of pore surface area as a function of heat treatment temperature (HTT) and heat treatment time (HTt) at constant temperature. From these measurements an analysis of the surface area kinetics was made to find out if rate processes are involved and to locate graphitization occurring at pore surfaces. PG on the other hand has been found to have larger sized pores that comprise five percent of its volume. In addition to being closed these pores are oriented. Some pore models are proposed for PG and the existing scattering theory from oriented ellipsoids is modified to include the proposed shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.