Abstract

In this study, the pore structure and gas permeability of river sand concrete and manufactured sand concrete (mixed with various stone powders) are examined under dry and wet conditions. First, the pore structure of concrete was tested using the mercury-in-pressure (MIP), hydrostatic balance (HB), and nuclear magnetic resonance (NMR) methods. Second, the gas permeability of concrete was measured using the quasi-stationary flow method. Finally, a numerical model was developed based on the relationship between the pore structure and gas permeability. The results indicated that the gas permeability of dry concrete has a quadratic linear relationship with the porosity and volumetric characteristic pore size. The pore structure of partially water-saturated concrete can be corrected using a correction factor and the relaxation rate of the dry material. Finally, a random hierarchical bundle model using the HB–NMR method is proposed. The maximum relative deviation between the predicted and experimental values is 48.28%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call