Abstract

Deeply buried (>3500 m) marine shale has become a focus point for the future exploration and exploitation of shale hydrocarbon in China. Low-temperature nitrogen adsorption (LTNA), scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and other experiments were combined to characterize the pore structure and fluid division in deep-marine shale of the southern Sichuan Basin in this study. The results suggest that the deep-marine shale had a relatively developed nanopore network, especially with honeycomb organic pores. These organic pores were largely macropores with good connectivity in three-dimensional space and constituted the major reservoir space of the deep-marine shale gas. Microfractures were predominantly clay-mineral-related fractures, and the development degree of microfractures connected with organic pores was low, which contributed to the preservation of organic pores. Within the deep-marine shale interval, the pore volumes of Section 1 and Section 3 were higher. Pore volume was predominantly contributed by pores above 10 nm, where macropores accounted for a large proportion. Based on a combination of high-speed centrifugation and gradient temperature drying, the pore fluid of deep-marine shale reservoirs was quantitatively classified into four types: clay-bound fluid, capillary-bound fluid, free-flowing fluid, and closed-pore fluid. The clay-bound fluid existed in pores of less than 4.25 nm, which cannot be exploited. Quantitative division of the shale pore system could be realized by using the pore space differences of different types of fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call