Abstract

Geochemical processes such as mineral dissolution and precipitation alter the microstructure of rocks, and thereby affect their hydraulic and mechanical behaviour. Quantifying these property changes and considering them in reservoir simulations is essential for a sustainable utilisation of the geological subsurface. Due to the lack of alternatives, analytical methods and empirical relations are currently applied to estimate evolving hydraulic and mechanical rock properties associated with chemical reactions. However, the predictive capabilities of analytical approaches remain limited, since they assume idealised microstructures, and thus are not able to reflect property evolution for dynamic processes. Hence, aim of the present thesis is to improve the prediction of permeability and stiffness changes resulting from pore space alterations of reservoir sandstones. A detailed representation of rock microstructure, including the morphology and connectivity of pores, is essential to accurately determine physical rock properties. For that purpose, three-dimensional pore-scale models of typical reservoir sandstones, obtained from highly resolved micro-computed tomography (micro-CT), are used to numerically calculate permeability and stiffness. In order to adequately depict characteristic distributions of secondary minerals, the virtual samples are systematically altered and resulting trends among the geometric, hydraulic, and mechanical rock properties are quantified. It is demonstrated that the geochemical reaction regime controls the location of mineral precipitation within the pore space, and thereby crucially affects the permeability evolution. This emphasises the requirement of determining distinctive porosity-permeability relationships by means of digital pore-scale models. By contrast, a substantial impact of spatial alterations patterns on the stiffness evolution of reservoir sandstones are only observed in case of certain microstructures, such as highly porous granular rocks or sandstones comprising framework-supporting cementations. In order to construct synthetic granular samples a process-based approach is proposed including grain deposition and diagenetic cementation. It is demonstrated that the generated samples reliably represent the microstructural complexity of natural sandstones. Thereby, general limitations of imaging techniques can be overcome and various realisations of granular rocks can be flexibly produced. These can be further altered by virtual experiments, offering a fast and cost-effective way to examine the impact of precipitation, dissolution or fracturing on various petrophysical correlations. The presented research work provides methodological principles to quantify trends in permeability and stiffness resulting from geochemical processes. The calculated physical property relations are directly linked to pore-scale alterations, and thus have a higher accuracy than commonly applied analytical approaches. This will considerably improve the predictive capabilities of reservoir models, and is further relevant to assess and reduce potential risks, such as productivity or injectivity losses as well as reservoir compaction or fault reactivation. Hence, the proposed method is of paramount importance for a wide range of natural and engineered subsurface applications, including geothermal energy systems, hydrocarbon reservoirs, CO2 and energy storage as well as hydrothermal deposit exploration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.