Abstract

The cost-effective, convenient, visible, and equipment-free determination of biomarkers is always the priority development concern of disease diagnosis. The paper-based signal output strategy permits output visual signals without instruments and is regarded as a promising approach with simple operation and low cost. Herein, by varying the addition amount of trypsin, we pioneered a novel enzyme mineralization strategy to construct trypsin@ZIF-90 with tunable porosity properties and catalytic activity. The successful synthesis of trypsin@ZIF-90, which is tagged with T1, T3,... (Tx, x is the addition amount of trypsin. Unit: mg), demonstrated the feasibility of this strategy. By serving the constructed trypsin@ZIF-90-T1 as the target recognition module, and a new designed hydrogel-integrated pH indicator strip as the signal reporter, a point-of-care test (POCT) platform was developed for convenient and equipment-free measurement of adenosine triphosphate (ATP). The enzymatic activity measurement of trypsin@ZIF-90 and concurrently the quantitative analysis of ATP can be favorably realized by simple counting the flow distance and coverage area of water released during the reaction on a pH indicator strip. As a result, this portable platform can enable rapid detection of ATP in the linear range of 20-1500 μM and possesses favorable sensitivity, selectivity, and applicability. Thus, the constructions of tunable frameworks and paper-based POCT are of outstanding significance in the fields of porous metal-organic framework synthesis, enzyme mineralization, and rapid detection for medical diagnostics and environmental monitoring applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call