Abstract

Microgravity hinders capillary-driven water flow in unsaturated porous media. Previous studies proposed pore-scale phenomena such as “air entrapment”, “particle separation”, and “interruption on widening void space” to explain gravity-dependent capillary-driven flows. Our objectives were: (1) to measure the water flux densities of the pore-scale capillary-driven flow in micro- and Earth-gravities and (2) to reveal that what makes water flow slower under microgravity than under 1 G. We found that average macroscopic water flux densities had no significant difference under micro- and Earth-gravities (p = 0.30). We did not observe “air entrapment” in the pore spaces of porous media. “Widening on a single particle” and “capillary widening” disturbed capillary-driven flow; however, “widening on a single particle” had no significant gravity dependency. “Capillary widening” may be independent of gravity, since it was observed both under microgravity and under 1 G. Water flux densities in unsaturated porous media may have gravity dependency induced by “particle separation” only when porosity is large enough to allow particles to move.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call