Abstract
We measured spectral induced polarization (SIP) signatures in sand columns during (1) FeS biomineralization produced by sulfate reducing bacteria (Desulfovibrio vulgaris) under anaerobic conditions, and (2) subsequent biomineral dissolution upon return to an aerobic state. The low‐frequency (0.1–10 Hz peak) relaxations produced during biomineralization can be modeled with a Cole‐Cole formulation, from which the evolution of the polarization magnitude and relaxation length scale can be estimated. We find that the modeled time constant is consistent with the polarizable elements being biomineral encrusted pores. Evolution of the model parameters is consistent with FeS surface area increases and pore‐size reduction during biomineral growth, and subsequent biomineral dissolution (FeS surface area decreases and pore expansion) upon return to the aerobic state. We conclude that SIP signatures are diagnostic of pore‐scale geometrical changes associated with FeS biomineralization by sulfate reducing bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.