Abstract

Summary The depletion of conventional reservoirs has led to increased interest in deep shale gas. Hydraulic fracturing addresses the challenge of developing low-permeability shale, involving hydro-mechanical coupling fracture propagation mechanics. Supercritical CO2 (SC-CO2) has become a promising alternative to fracturing fluids due to its ability to be buried underground after use. The high temperature, pressure, and stress of deep shale lead to the flow of fracturing fluid to plastic deformation of rock, resulting in microfractures. In this paper, we simulate the fracture propagation process of deep shale fractured by SC-CO2 based on the coupling of the Darcy-Brinkman-Biot method, which adopts the Navier-Stokes-like equation to solve the free flow region, and the Darcy equation with Biot’s theory to solve flow in the matrix. To clearly probe the mechanism of deep fracturing from a microscopic perspective, the plastic rock property is taken into consideration. We investigate the effects of injection velocity, rock plastic yield stress, formation pressure, and gas slippage effect on fluid saturation and fracture morphology, and find that increasing the injection rate of fracturing fluid can form better extended fractures and complex fracture networks, improving the fracturing effect. Furthermore, we find that it is more appropriate to adopt SC-CO2 as a fracturing fluid alternative in deep shale with higher plastic yield stress due to higher CO2 saturation in the matrix, indicating greater carbon sequestration potential. High confining pressure promotes the growth of shear fractures, which are capable of more complex fracture profiles. The gas slip effect has a significant impact on the stress field while ignoring the flow field. This study sheds light on which deep shale gas reservoirs are appropriate for the use of SC-CO2 as a fracturing fluid and offers recommendations for how to enhance the fracturing effect at the pore scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call