Abstract

Recent theoretical and experimental studies of vapor transport through porous media question the existence and significance of vapor transport enhancement mechanisms postulated by Philip and de Vries. Several enhancement mechanisms were proposed to rectify shortcomings of continuum models and to reconcile discrepancies between predicted and observed vapor fluxes. The absence of direct experimental and theoretical confirmation of these commonly invoked pore scale mechanisms prompted alternate explanations considering the (often neglected) role of transport via capillary connected pathways. The objective of this work was to quantify the specific roles of liquid bridges and of local thermal and capillary gradients on vapor transport at the pore scale. We considered a mechanistic pore scale model of evaporation and condensation dynamics as a building block for quantifying vapor diffusion through partially saturated porous media. Simulations of vapor diffusion in the presence of isolated liquid phase bridges reveal that the so‐called enhanced vapor diffusion under isothermal conditions reflects a reduced gaseous diffusion path length. The presence of a thermal gradient may augment or hinder this effect depending on the direction of thermal relative to capillary gradients. As liquid phase saturation increases, capillary transport becomes significant and pore scale vapor enhancement is limited to low water contents as postulated by Philip and deVries. Calculations show that with assistance of a mild thermal gradient water vapor flux could be doubled relative to diffusion of an inert gas through the same system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call