Abstract
AbstractWe study the impact of physical and chemical heterogeneity on reaction rates in multimineral porous media. We selected two pairs of carbonate samples of different physical heterogeneity in accordance with their initial computed velocity distributions and then injected CO2 saturated brine at reservoir conditions at two flow rates. We periodically imaged the samples using X‐ray microtomography. The mineralogical composition was similar (a ratio of dolomite to calcite of 8:1), but the intrinsic reaction rates and mineral spatial distribution were profoundly different. Visualizations of velocity fields and reacted mineral distributions revealed that a dominant flow channel formed in all cases. The more physically homogeneous samples had a narrower velocity distribution and more preexisting fast channels, which promoted dominant channel formation in their proximity. In contrast, the heterogeneous samples exhibit a broader distribution of velocities and fewer fast channels, which accentuated nonuniform calcite distribution and favored calcite dissolution away from the initially fast pathways. We quantify the impact of physical and chemical heterogeneity by computing the proximity of reacted minerals to the fast flow pathways. The average reaction rates were an order of magnitude lower than the intrinsic ones due to mass transfer limitations. The effective reaction rate of calcite decreased by an order of magnitude, in both fast channels and slow regions. After channel formation calcite was shielded by dolomite whose effective rate in slow regions could even increase. Overall, the preferential channeling effect, as opposed to uniform dissolution, was promoted by a higher degree of physical and/or chemical heterogeneity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.