Abstract

Well-predicted pore pressure is vital throughout the lifetime of an oil and gas field starting from exploration to the production stage. Here, we studied a mature field where enhanced oil recovery is of high interest and pore pressure data is crucial. Moreover, the top of the overpressure zone in west Baram Delta starts at different depths. Hence, valid pore pressure prediction prior to drilling is a prerequisite for reducing drilling risks, increasing efficient reservoir modeling and optimizing costs. Petrophysical logs such as gamma-ray, density logs, and sonic transit time were used for pore pressure prediction in the studied field. Density logs were used to predict the overburden pressure, whereas sonic transit time, and gamma-ray logs were utilized to develop observed shale compaction trend line (OSCTL) and to establish a normal compaction trend line (NCTL). Pore pressure was predicted from a locally observed shale compaction trend line of 6 wells using Eaton’s and Miller's methods. The predicted pore pressure using Eaton’s DT method with Eaton’s exponent 3 showed a better matching with the measured pressure acquired from the repeat formation test (RFT). Hence, Eaton’s DT method with Eaton exponent 3 could be applied to predict pore pressure for drilling sites in the study area and vicinity fields with similar geological settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.