Abstract

The present experimental work investigates the build-up of pore pressure at different depths of High Strength Concrete (HSC) and Hybrid-Fibre-Reinforced High Strength Concrete (HFRHSC) when exposed to different heating rates. First, the effect of the measurement technique on maximum pore pressures measured was evaluated. The pressure measurement technique which utilised a sintered metal and silicon oil was found to be the most effective technique for pore pressure measurement. Pore pressure measurements carried out showed that addition of polypropylene fibres is very effective in mitigation of spalling and build-up of pore pressure inside heated HSC. Addition of steel fibres plays some role in pore pressure reduction at relatively higher pressures in deeper regions of concrete during fast heating. Pore pressure development is highly influenced by the rate of heating with fast heating leading to higher pore pressures in the deeper regions of concrete compared to slow heating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call