Abstract

Coke is an important medium for connecting reaction and regeneration of the methanol to propylene process on the ZSM-5 catalyst. Coke grows in the meso and macro pores, it gradually worsens the diffusion inside the catalyst particle. Furthermore, pore plugging is inevitable which causes the deactivation of ZSM-5 catalyst. However, current continuum model cannot reflect the changes in pore structure with clear physical concepts. A discrete model that is verified by the carbon deposition experiments is introduced to indicate the behavior of pore plugging effects. Results show that the pore plugging has a significant effect on the performance of the catalyst. The time varying profile of effectiveness factor is obtained, indicating a regular reduction with the increase of the pore plugging effect. Spatial distributions of pore size that would significantly enhance the plugging effect are also identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.