Abstract
In this contribution we explore by means of experiments, theory, and molecular dynamics the effect of pore morphology on the spontaneous extrusion of nonwetting liquids from nanopores. Understanding and controlling this phenomenon is central for manipulating nanoconfined liquids, e. g., in nanofluidic applications, drug delivery, and oil extraction. Qualitatively different extrusion behaviors were observed in high-pressure water intrusion-extrusion experiments on porous materials with similar nominal diameter and hydrophobicity: macroscopic capillary models and molecular dynamics simulations revealed that the very presence or absence of extrusion is connected to the internal morphology of the pores and, in particular, to the presence of small-scale roughness or pore interconnections. Additional experiments with mercury confirmed that this mechanism is generic for nonwetting liquids and is rooted in the pore topology. The present results suggest a rational way to engineer heterogeneous systems for energy and nanofluidic applications in which the extrusion behavior can be controlled via the pore morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.