Abstract

Porous electrodes commonly exhibit much higher charge–discharge capacities than normal electrodes due to their large surface areas. Some factors such as pore size (pore diameter) and wall thickness also influence the electrochemical behavior of porous electrodes in lithium-ion batteries (e.g. the rate of Li-ion intercalation). Here we investigated how the pore length influenced the charge–discharge capacities by using mesoporous Co3O4 with various particle sizes synthesised via controlling the particle size of SBA-15 templates. The capacity and rate capability of porous Co3O4 were increased with reduction in particle size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.