Abstract

Pores are major cause of fatigue failure in laser-directed energy deposition (L-DED) titanium alloy. For the safe application of L-DED titanium alloys, it is essential to establish a fatigue life prediction method based on pore-induced fatigue. This paper proposes a prior progressive fatigue life prediction framework based on ridge classification and kernel ridge regression algorithms. The fatigue life prediction was carried out on L-DED Ti-6Al-4V alloy in three steps: critical pore identification, fine granular area existence prediction and final fatigue life prediction. The fatigue life prediction method adopted in the current study outperform the others with a correlation coefficient as high as 0.951, followed by a comparison with the results derived from different machine learning algorithms. The results show that the proposed fatigue life prediction framework can predict the fatigue life of L-DED Ti-6Al-4V alloy based on computed tomography tests and microstructure features. Due to its strong generalization ability and effectiveness, the proposed prediction method is expected to be valuable for fatigue-resistant design of L-DED Ti-6Al-4V alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call