Abstract

The Escherichia coli alpha-hemolysin represents a potent stimulus for inflammatory mediator release (O2-, beta-glucuronidase release, and leukotriene generation) from human polymorphonuclear granulocytes, for histamine release from a suspension of human lymphocyte/monocyte basophil cells (LMB), and for serotonin release and 12-hydroxyeicosatetraenoic acid generation from human platelets. In contrast, the E. coli alpha-hemolysin leads to a downregulation of cytokine release (interleukin-1 beta [IL-1 beta], IL-6, and tumor necrosis factor alpha) from human LMB. Recently, it became apparent that the E. coli alpha-hemolysin is composed of several functional structures. We analyzed the role of pore formation, pore stability, and calcium-dependent membrane binding for inflammatory mediator release by using washed bacteria as well as culture supernatants of isogenic recombinant E. coli strains expressing no hemolysin (Hly-), the wild-type hemolysin (Hly+), or hemolysin molecules deficient or modulated in defined functions (pore formation, calcium-dependent membrane binding, or pore stability). In human granulocytes and platelets, mutant hemolysin with enhanced pore stability did not lead to a further increase in induction; mutant hemolysin deficient in pore-forming activity or calcium-dependent membrane binding no longer induced leukotriene B4 generation or beta-glucuronidase release compared with the wild-type hemolysin. Similar results were obtained with regard to histamine release from human LMB. The induction of cytokine release from human LMB differed depending on the type of mutant E. coli alpha-hemolysin. The wild-type hemolysin, the mutant hemolysin with enhanced pore-forming activity, and, to a lesser degree, the mutant hemolysin deficient in pore-forming activity decreased cytokine release (IL-1 beta, IL-6, IL-8, and tumor necrosis factor) compared with untreated cells. In contrast, the mutant hemolysin deficient in calcium-dependent membrane binding led to an increase of up to 50% in cytokine release compared with that by unstimulated cells. Our results indicate that simultaneous expression of the pore-forming and calcium-dependent membrane-binding activities of the hemolysin molecule was necessary to obtain the full cellular inflammatory response pattern observed with the wild-type hemolysin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.