Abstract

A metallic foam specimen was plastically joined with a resin (polymethyl methacrylate, PMMA) sheet by applying friction stir incremental forming (FSIF) process. In FSIF process, a rotating flat-ended (no probe) rod tool was pushed vertically and fed horizontally against the resin sheet which was placed on the foam. The tool operation heated frictionally the resin and deformed incrementally to the resin, while the tool operation did not deform plastically to the cellular matrix of the foam. Due to the plastic flow of the heated resin, the bottom of the resin was interlocked mechanically to the pores near the top surface of the foam. In this study, the relationship between the pore morphology (form and size) and the joining characteristics (joinability, flow thickness of the resin, and joining strength) was investigated using commercial open-cell nickel and closed-cell aluminum foams. According to the experimental investigations, the foam with small size and low depression angle of the surface pore showed better results in relation with the joining strength and the (flow thickness of the resin)/(depth of the surface pore).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call