Abstract
Metal-organic frameworks are a new class of heterogeneous catalysts in which molecular-level control over both the immediate and long-range chemical environment surrounding a catalytic center can be readily achieved. Here, the oxidation of cyclohexane to cyclohexanol and cyclohexanone is used as a model reaction to investigate the effect of a hydrophobic pore environment on product selectivity and catalyst stability in a series of iron-based frameworks. Specifically, expanded analogues of Fe2(dobdc) (dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) were synthesized and evaluated, including the biphenyl derivative Fe2(dobpdc) (H4dobpdc = 4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid), the terphenyl derivative Fe2(dotpdc) (H4dotpdc = 4,4″-dihydroxy-[1,1':4',1″-terphenyl]-3,3″-dicarboxylic acid), and three modified terphenyl derivatives in which the central ring is replaced with tetrafluoro-, tetramethyl-, or di-tert-butylaryl groups. Within these five materials, a remarkable 3-fold enhancement of the alcohol:ketone (A:K) ratio and an order of magnitude increase in turnover number are achieved by simply altering the framework pore diameter and installing nonpolar functional groups near the iron site. Mössbauer spectroscopy, kinetic isotope effect, and gas adsorption measurements reveal that variations in the A:K selectivities arise from differences in the cyclohexane adsorption enthalpies of these frameworks, which become more favorable as the number of hydrophobic residues and thus van der Waals interactions increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.