Abstract

Summary This study introduces a novel outlook on a shale-pore system and on the potential effect of pore compressibility on the production performance. We divide porosity of the system into accessible and inaccessible pores, and incorporate inaccessible pores with grains into the part of the rock that is not accessible. In general, accessible pores contribute to flow directly, whereas inaccessible pores do not. We present a mathematical model that uses mercury-injection capillary pressure (MICP) data to determine the accessible-pore and inaccessible part of the rock (IRP) compressibility as a function of pressure. During MICP testing in a typical shale sample, the rock sample experiences conformance, compression, and intrusion as effective pressure increases. We characterize the compressibility value dependent on MICP data as a function of pressure. The calculated compressibility values for accessible pores generally appear to be much greater (two to three orders of magnitude) than those of IRP. Next, we evaluate how calculated accessible-pore-compressibility values affect gas recovery in several shale-gas plays. Our results suggest that substitution of total pore compressibility with accessible-pore compressibility can significantly change the reservoir-behavior prediction. The fundamental rock property used in many reservoir-engineering calculations including reserves estimates, reservoir performance, and production forecasting is the total pore-volume (PV) compressibility, which has an approximate value typically within the range of 1 × 10−6 to 1 × 10−4 psi−1 (Mahomad 2014). By recognizing the part of the pore system that actually contributes to production and identifying its compressibility, we can substitute total pore compressibility with accessible-pore compressibility. The result changes the value by nearly two orders of magnitude. The outcome of the paper changes the industry's take on prediction of reservoir performance, especially the rock-compaction mechanism. This study finds that production caused by rock compaction is in fact much greater than what has often been regarded, which will change the performance evaluation on a great number of reservoirs in terms of economic feasibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.