Abstract

Supercritical carbon dioxide (ScCO2) fracturing is a green, clean, waterless extraction technique that has gained widespread attention. Coal pore properties, such as porosity, pore size distribution, connectivity, and permeability, are critical for fracturing and efficient coalbed methane production. This study examines the effects of ScCO2 fracturing on coal reservoir pore modification by conducting true triaxial ScCO2 fracturing experiments on high-rank coal samples under various stresses and injection rates. Low field nuclear magnetic resonance technique was used to compare and analyse the pore permeability characteristics of the samples before and after ScCO2 fracturing. The research discusses the influence of stress and ScCO2 fracturing fluid injection rate on coal pore modification and its controlling mechanisms. The results show a significant impact on coal pore modification, with a 59.85 % increase in porosity, 60 % increase in pore volume, 56 % increase in pore throat volume, and 47.5 % increase in permeability. Under the same injection rate and fixed temperature (40 °C), higher stress differences (8 MPa) benefit large pore modification and connectivity, while lower stress differences (4 MPa) are more favourable for micropore and transition pore modification and connectivity. These findings contribute to a deeper understanding of the microscopic mechanisms of ScCO2 fracturing in modifying coal pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.