Abstract

Poly(lactide-co-glycolide) (PLGA), a well-known synthetic polymer comprised of PLA and PGA, is used commonly as a scaffold for soft and hard tissue engineering purposes; however, the appropriate strategies for reducing its host tissue inflammatory response remain obscure. Porcine small intestinal submucosa (SIS) has been applied as a natural, biodegradable matrix for dressing materials, tendon graft substitutes and scaffolds. We hypothesized that the host tissue reaction of PLGA might occur but could be reduced by impregnating SIS into PLGA. We manufactured PLGA/SIS hybrid films with 0, 10, 20, 40 and 80 wt.% SIS of PLGA. The inflammatory potential of PLGA was evaluated using mRNA expression of TNF-α, IL-1β and IL-6 in the surrounding tissue of implanted scaffolds. The response of subcutaneously implanted PLGA/SIS films were compared to PLGA film; the local inflammatory response was observed by histology. PLGA/SIS films, especially PLGA/SIS films containing 20, 40 and 80 wt.% SIS, elicited a significantly lower expression of IL-1β, TNF-α and IL-6 than PLGA film. PLGA/SIS films demonstrated a favorable tissue response profile compared to PLGA film, with significant less inflammation and fibrous capsule formation as below only 20 wt.% of PLGA/SIS film during implantation. This study demonstrates reduced inflammatory response of PLGA by different amounts of SIS and PLGA/SIS scaffolds being used for tissue engineering constructs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call