Abstract

In recent years, genomic and proteomic biomarkers have been identified for the diagnosis of male fertility to overcome the limitations of conventional semen analysis. Owing to the limited genes available so far, the single gene approach is commonly adopted for analyzing the phenotype of interest. However, the single-gene approach is less effective than multiple-gene strategies for diagnosing a desirable phenotype. Herein, we investigate the ability of two fertility-related genomic markers (porcine seminal protein (PSP)-I and PSP-II) in spermatozoa to predict boar litter size in addition to conventional semen parameters. First, we examined different semen parameters (motility, motion kinematics, and capacitation status) and gene expression in high- and low-litter size boar spermatozoa. Then, we evaluated the correlation of these parameters with the fertility of 21 Yorkshire boars. Finally, we investigated the efficacy of single/combined markers to predict male fertility using a comprehensive statistical model. Our result showed that there were no significant differences in sperm motility, motion kinematics, or capacitation status, however, the mRNA expression of PSP-I and PSP-II in spermatozoa was significantly different in high- and low-litter size boars. In the individual screening test, the expression of both genes was negatively correlated with boar fertility (r = 0-0.578 and −0.456, respectively), whereas only hyperactivation (HYP) showed a positive correlation (r = 0.444) among the tested semen parameters. As single markers, PSP-I and PSP-II have a better diagnostic power to predict boar fertility, regardless of HYP, in quality assessment analyses. In addition, when these markers were combined, the positive predictive value, negative predictive value, and overall test effectiveness for fertility detection were improved. Surprisingly, when PSP-I and PSP-II were considered together, the deviation of the predicted average litter size between high- and low-litter size boars was 1.77. Based on the findings, we suggest that the use of genomic markers in spermatozoa rather than commonly analyzed semen parameters may be more accurate for evaluating male fertility. Moreover, using a combination of markers could increase the overall accuracy of (in)fertility predictions, and thus, could be considered for field application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.