Abstract

ABSTRACTTo fulfill virus replication and persistent infection in hosts, viruses have to find ways to compromise innate immunity, including timely impedance on antiviral RNases and inflammatory responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen causing immune suppression. MALT1 is a central immune regulator in both innate and adaptive immunity. In this study, MALT1 was confirmed to be induced rapidly upon PRRSV infection and mediate the degradation of two anti-PRRSV RNases, MCPIP1 and N4BP1, relying on its proteolytic activity, consequently facilitating PRRSV replication. Multiple PRRSV nsps, including nsp11, nsp7β, and nsp4, contributed to MALT1 elicitation. Interestingly, the elevated expression of MALT1 began to decrease once intracellular viral expression reached a high enough level. Higher infection dose brought earlier MALT1 inflection. Further, PRRSV nsp6 mediated significant MALT1 degradation via ubiquitination-proteasome pathway. Downregulation of MALT1 suppressed NF-κB signals, leading to the decrease in proinflammatory cytokine expression. In conclusion, MALT1 expression was manipulated by PRRSV in an elaborate manner to antagonize precisely the antiviral effects of host RNases without excessive and continuous activation of inflammatory responses. These findings throw light on the machinery of PRRSV to build homeostasis in infected immune system for viral settlement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.