Abstract

Porcine parvovirus (PPV) is a DNA virus that causes reproductive failure in gilts and sows, resulting in embryonic and fetal losses worldwide. Epitope mapping of PPV is important for developing new vaccines. In this study, we used spot synthesis analysis for epitope mapping of the capsid proteins of PPV (NADL-2 strain) and correlated the findings with predictive data from immunoinformatics. The virus was exposed to three conditions prior to inoculation in pigs: native (untreated), high hydrostatic pressure (350 MPa for 1 h) at room temperature and high hydrostatic pressure (350 MPa for 1 h) at − 18 °C, and was compared with a commercial vaccine produced using inactivated PPV. The screening of serum samples detected 44 positive spots corresponding to 20 antigenic sites. Each type of inoculated antigen elicited a distinct epitope set. In silico prediction located linear and discontinuous epitopes in B cells that coincided with several epitopes detected in spot synthesis of sera from pigs that received different preparations of inoculum. The conditions tested elicited antibodies against the VP1/VP2 antigen that differed in relation to the response time and the profile of structurally available regions that were recognized.

Highlights

  • Porcine parvovirus (PPV), or Ungulate Protoparvovirus 1 as proposed by Cotmore et al [1], is a 25-nm diameter, non-enveloped icosahedral virus that contains ~ 5 kb of negative sense, single-strand DNA with two large open reading frames (ORFs) in its genome

  • Epitope mapping A schematic representation of the membrane is depicted in Fig. 1a, with the positive spots highlighted in Fig. 1b and c, portraying the detailed conditions for each positive result

  • Epitope mapping strategies have been extensively applied to key pathogens and the results provided by this approach have important applications in public health, as well as in animal safety and welfare [36,37,38,39,40]

Read more

Summary

Introduction

Porcine parvovirus (PPV), or Ungulate Protoparvovirus 1 as proposed by Cotmore et al [1], is a 25-nm diameter, non-enveloped icosahedral virus that contains ~ 5 kb of negative sense, single-strand DNA (ssDNA) with two large open reading frames (ORFs) in its genome. ORF1 codes for the nonstructural proteins NS1, NS2 and NS3, and ORF2 codes for the structural proteins VP1, VP2 and VP3 [2]. VP1 and VP2 capsid proteins are the result of an alternative splicing of the same gene and VP3 is formed by proteolytic cleavage of VP2. These structural proteins are responsible for the immunogenic properties of PPV [3]. PPV infects pregnant gilts and sows, causing reproductive failure characterized by embryonic and fetal death, mummification and stillbirths, with delayed return to oestrus [4]. The resulting reduction in reproductive capacity can significantly decrease pork production [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call