Abstract

BackgroundThe gastrointestinal tract is the first target for the potentially harmful effects of mycotoxins after intake of mycotoxin contaminated food or feed. With deoxynivalenol (DON), T-2 toxin (T-2), fumonisin B1 (FB1) and zearalenone (ZEA) being important Fusarium toxins in the northern hemisphere, this study aimed to investigate in vitro the toxic effect of these mycotoxins on intestinal porcine epithelial cells derived from the jejunum (IPEC-J2 cells). Viability of IPEC-J2 cells as well as the proportion of apoptotic and necrotic IPEC-J2 cells was determined by flow cytometry after 72 h of exposure to the toxins. Correlatively, the integrity of the intestinal epithelial cell monolayer was studied using Transwell® inserts, in which the trans-epithelial electrical resistance (TEER) and passage of the antibiotics doxycycline and paromomycin were used as endpoints.ResultsWe demonstrated that the percentage of Annexin-V-FITC and PI negative (viable) cells, Annexin-V-FITC positive and PI negative (apoptotic) cells and Annexin-V-FITC and PI positive (necrotic) IPEC-J2 cells showed a mycotoxin concentration-dependent relationship with T-2 toxin being the most toxic. Moreover, the ratio between Annexin-V-FITC positive and PI negative cells and Annexin-V-FITC and PI positive cells varied depending on the type of toxin. More Annexin-V-FITC and PI positive cells could be found after treatment with T-2 toxin, while more Annexin-V-FITC positive and PI negative cells were found after exposure to DON. Consistent with the cytotoxicity results, both DON and T-2 decreased TEER and increased cellular permeability to doxycycline and paromomycin in a time- and concentration-dependent manner.ConclusionsIt was concluded that Fusarium mycotoxins may severely disturb the intestinal epithelial barrier and promote passage of antibiotics.

Highlights

  • The gastrointestinal tract is the first target for the potentially harmful effects of mycotoxins after intake of mycotoxin contaminated food or feed

  • Pinton et al [12,13] showed that the trichothecene deoxynivalenol (DON) selectively affects the expression of tight junction proteins in porcine intestinal epithelial cell monolayers (IPEC-1) and Caco-2 cell monolayers resulting in increased paracellular passage of fluorescein isothiocyanate (FITC)dextran and Escherichia coli

  • A concentration of 10 μg/ml doxycycline and 30 μg/ml paromomycin was determined to be non-cytotoxic for IPEC-J2 cells Figure 2 represents the percentage of viable cells after exposure for 24 h to 5, 10, 20 or 40 μg/ml doxycycline (a) or paromomycin (b), respectively

Read more

Summary

Introduction

The gastrointestinal tract is the first target for the potentially harmful effects of mycotoxins after intake of mycotoxin contaminated food or feed. With deoxynivalenol (DON), T-2 toxin (T-2), fumonisin B1 (FB1) and zearalenone (ZEA) being important Fusarium toxins in the northern hemisphere, this study aimed to investigate in vitro the toxic effect of these mycotoxins on intestinal porcine epithelial cells derived from the jejunum (IPEC-J2 cells). Mycotoxins are naturally occurring secondary metabolites produced by fungi They can be formed in the field on crops as well as during storage and are chemically very stable, enabling them to survive processing, and thereby end up in the feed and food chain. Intestinal epithelial cells are important targets for the toxic effects of mycotoxins and it is clear that an altered barrier could result in an altered passage of mycotoxin co-contaminants, xenobiotics and pathogens

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call